Table of Contents

Introduction ... 1
 Contacting WebNMS Support ... 1
 Pre- Requisites .. 1

IoT, sensors, and cloud server .. 3
 Internet of things (IoT) ... 3
 Sensor deployment ... 4
 Communication between sensor and cloud server ... 4

System Requirements ... 1
 Hardware Requirements ... 1
 Software Requirements ... 1

Prepare the Gateway Device .. 2
 Login to the Cloud Gate Device .. 2
 Install the Firmware ... 4

Update the Connectivity Settings .. 6
 LAN Mode .. 6
 WAN Mode .. 7

3G Connection Settings ... 10
 Upload the Agent .. 14
 Update the Date and Time Settings ... 15
 Upload the Json File .. 16

Compatible Sensors ... 17
 Analog Sensor ... 17
 Digital Sensor .. 17
 Digital Input Sensors: ... 17
 Digital Output Sensors: ... 17
 RS485 Sensor .. 17

Protocols Supported .. 18
 SNMP (Simple Network Management Protocol) ... 18
 MODBUS ... 18
 IP Camera (Internet Protocol Camera) .. 19
 Analog sensors ... 20
Introduction

This document guides you through deploying and configuring the sensors at the remote locations. These sensors fetch the data from the remote location and with the help of the gateway device, they transfer the data to the WebNMS server.

Contacting WebNMS Support

WebNMS support provides assistance with installing the sensors, configuring the data points, answers FAQs, and helps the user to troubleshoot any problems. You can also e-mail your queries related to sensors deployment and configuration to iot-support@webnms.com.

Pre- Requisites

This guide has been written with an assumption that the user has a basic knowledge on the sensors and is well versed with the basics of electronics.

- Relevant sensors as per your requirement.
- WebNMS IoT platform.
IoT, sensors, and cloud server

- **Internet of things (IoT)**
- **Sensor deployment**
- **Communication between the sensor and cloud server**

Internet of things (IoT)

Internet of things widely known as IoT is a network of physical objects like devices, vehicles, buildings, etc. embedded with electronics, software, sensors, actuators, and network connectivity that allows the exchange of huge volume of data either through wired or wireless means. How this internet of things work is really simple, this is the concept of basically connecting any device to the Internet and let them communicate with other devices, users etc. This IoT structure basically involves sensors, gateway devices, and the cloud server over which the communication can take place. All the devices communicating in IoT network will talk to each other using the same Internet Protocol (IP).
Sensor deployment

Sensors are deployed at the remote location so that they can detect any changes in the environment and notify the user for the occurred changes. These changes are captured by the gateway device and with the help of some configurations; the data is pushed to the cloud server. Multi-purpose EdgeX agent which is installed to the gateway device is the bridge between the sensors installed at the remote location and the cloud server. The agent inside the gateway device ensures that the communication is established between the sensors and the cloud server.

Communication between sensor and cloud server

A sensor is fixed at the selected remote location and is connected to the gateway device. Communication establishes through the gateway device via WAN mode or the Ethernet mode. WAN mode helps the gateway device to interact directly with the internet whereas; Ethernet mode helps the gateway device to interact with the locally installed devices. Once the communication mode settings are done in the gateway device, the cloud server is to be configured. Once all the configuration is done, communication initiates between the sensors, the gateway device, and the cloud server. This allows the user to monitor the data from any location in your mobile, web browser etc.
System Requirements

- **Hardware Requirements**
- **Software Requirements**

Hardware Requirements

A Cloud Gate device is required with the telematics expansion card (for more details on the telematics expansion card, refer to [Cloud Gate Universe](#)).

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Item name</th>
<th>Quantity</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cloud gate 3G EMEA Kit</td>
<td>1</td>
<td>CG0112-11965</td>
</tr>
<tr>
<td>2.</td>
<td>Telematics card with CAN I/O Expander</td>
<td>1</td>
<td>CG5106-11984</td>
</tr>
<tr>
<td>3.</td>
<td>Telematics card IO connector (9x2)</td>
<td>1</td>
<td>1008837</td>
</tr>
<tr>
<td>4.</td>
<td>Pre-crimped cables for telematics card I/O connector (300mm, 20AWG)</td>
<td>10</td>
<td>1008836</td>
</tr>
</tbody>
</table>

Software Requirements

- Cloud Gate firmware version 2.58 should be pre-installed in the Cloud Gate device. If the firmware is not installed, refer to [Install the firmware](#) to install the correct firmware version.
- WebNMS IoT Platform.

Note: Cloud Gate device should have an uninterrupted power supply. If there is a possibility of some power interruptions, then there should be provisions of back-up power supply. Cloud Gate device can also be connected to a battery in case of power interruptions. The Cloud Gate device operates on DC power provided by a DC power supply or by an AC power adapter. Only use power supplies in the range 9V to 33V DC and make sure that the product is installed near a power outlet that is easily accessible.
Prepare the Gateway Device

- Login to the Cloud Gate Device
- Install the Firmware
- Update the Connectivity Settings
 - LAN Mode
 - WAN Mode
 - Login to Cloud Gate in WAN Mode
 - Find the IP Address
 - Login to the Device
- 3G Connection Settings
- Upload the agent
- Update the Date and Time settings
- Upload the Json File

Login to the Cloud Gate Device

1. Power on the Cloud Gate device and connect one to one using an Ethernet cable to a laptop.
2. Load 192.168.1.1 in web browser with the user name as 'admin' and password as 'admin'.
3. Navigate to Provisioning tab and under Settings, click No on Enable automatic
 provisioning so that the Cloud Gate device won't check for updates automatically.
 Click Save changes.
4. Switch on the device and navigate to the Home tab on the screen and check the
 firmware version under the system info settings. The compatible firmware version is
 2.58 at the moment.
Figure 2 Login to Cloud gate device

Figure 3 Disable automatic provisioning

Zoho Corp.
Install the Firmware

If there is an updated firmware version installed to the Cloud Gate device, follow the procedure given below to re-install firmware version 2.58.

1. Create an account in the Cloud Gate Universe.
2. To download the firmware version from the Cloud Gate Universe, click Option Firmware 2.58 and select Option Firmware 2.58.
3. Navigate to the Provisioning tab and under Upload device provisioning file, click Choose file to select the firmware version.
4. Browse the location of the downloaded firmware and click Upload to install the Cloud Gate firmware 'option_firmware_2.58.bin'.
5. After upload when asked for option select Restart and wait for 2 - 3 minutes approximately for the device to restart.
6. Login to 192.168.1.1 in browser again after reboot.
7. Navigate to the Home tab and check the firmware version, it should show 2.58 (Refer to screen shots given below).
Figure 5 Install the correct firmware
Update the Connectivity Settings

The Cloud Gate device can be connected to the network via different modes i.e. LAN, WAN, Wi-Fi, or as a hotspot. The below mentioned will give you a detailed explanation on how to connect the Cloud Gate device to the network using the mentioned different modes.

LAN Mode

1. Navigate to Interfaces tab and select the Main Ethernet.
2. Under the General settings, select the Mode as LAN.
3. Select WAN/LAN switch over as Yes.
4. Under the IP config settings, Enable DHCP server by clicking Yes.
5. Click Save changes.
WAN Mode

1. While you are connected in LAN mode, navigate to the Interfaces tab, Main Ethernet page. Under the General settings, select mode as WAN.
2. Select WAN/LAN switch over as Yes.
3. Under the IP config settings, select the IP mode as Dynamic.
4. Click Save changes.
5. Navigate to the System tab and under Username and password, change the default password to a new password.
6. Navigate to the Firewall tab and under Default policies, select Accept for WAN-->Local.

Zoho Corp.
Figure 8 WAN Mode Connection settings
Figure 9 WAN Mode connection settings

Figure 10 WAN Mode connection settings
Login to Cloud Gate in WAN Mode

To login in to the Cloud Gate device in WAN mode, you need to find the IP address of the device.

Find the IP Address of the Device

- To find the IP address in Linux system, use **ARP-SCAN**.

 o Give the command `sudo arp-scan --localnet --interface=eth0` and press Enter. There will be a list of IP addresses on the screen. You can identify the IP address of the device by the host name which will be listed as 'Option'.

- To find the IP address in Windows system, use **Advanced IP scanner** to scan the IP address of the device.

Login to the Device

Put the IP address of the device in the URL of the browser and login using the username as **'admin'** and password will be the changed password.

3G Connection Settings

Before starting to work with the 3G connection settings, make sure that a SIM which has a proper 3G connection is installed to the Cloud Gate device. (Refer to the screen shot given below)

![Figure 11 Install the SIM to the Cloud Gate device](image-url)
Follow the procedure as given below to enable the 3G connection settings in the Cloud Gate device.

1. Navigate to the **Connection Persistence tab**.
2. Enable Connection Watchdog by clicking **Yes** and add the following 2 addresses to check. 8.8.8.8 and 8.8.4.4.
3. Disable the Use Ping in addition to DNS by clicking **No**. Enter the **Checking interval** as 450 seconds and click **Reset Interface** for Watchdog action.
4. Click **Save Changes**.
5. Navigate to the **Interfaces tab** and select 3G connection.
6. Under the **General** settings, select **Yes** for WWAN Div Antenna present and click **Save changes**.
7. All the three LEDs will go off and the device will initialize again. In a moment all the 3 LEDs should come green.
8. If the middle LED is RED, and home page status says Disconnected, check the Connection status against 3G Connection in the home page under connection strategy. If it says Pin has to be entered, navigate to the **Interfaces tab** and under 3G connection, Enable the pin settings by clicking **Yes**. Enter the pin number and click **Save changes**.

![3G connection settings](image)

Figure 12 3G connection settings
Figure 13 3G connection settings
Figure 14 3G connection settings
Upload the Agent

1. Download the EdgeX agent from [M2M agent](#).
2. Navigate to the provisioning tab and go to Upload device provisioning file.
3. Browse the location of the downloaded agent file and click Upload.
4. After upload when asked for option select Restart. Wait for 2 minutes approximately for the gateway to restart.

![CloudGate Device Provisioning](image)

Figure 15 Upload the M2M agent

Note: Make sure the SIM is activated and has proper data plan for GPRS(2G) or 3G communication.

Zoho Corp.
Update the Date and Time Settings

1. Navigate to System tab and go to Time Settings and select the required time zone based on the deployment zone.

2. Under the NTP server, give pool.ntp.org and click Save Changes. This is the default NTP server, but the NTP server will differ based on the different deployment zones.

3. Log in to Cloud Gate device by giving the command root@IP address of the Cloud Gate device and press Enter.

4. Enter the password as public. You have logged in to Cloud Gate device remotely.

5. Check the date of the device by giving the command date in the console. If the date is not correct, change the date of the Cloud Gate device by giving the command date "201610241645" where 201610241645 denotes "yyymmdhhmm" and press Enter

6. After changing the date, give the command date to check whether the date is updated or not.

Figure 16 Update the Date and Time

Note: The date and time settings can only be done after the M2M agent is installed in the Cloud Gate device. If you try to change the date and time settings before installing the M2M agent, an error will be displayed as "Operation not permitted".

Zoho Corp.
Upload the Json File

1. Download the Json file after doing the initial configuration in the WebNMS server. To know more on how to do the initial configuration, refer to User Admin Guide.

2. Connect the Cloud Gate device one to one using Ethernet wire.

3. Open the browser in the system and load the IP address of the Cloud Gate device that you found in Login to Cloud Gate in WAN Mode.

4. Login to the Cloud Gate device using user name as ‘admin’ and password as ‘admin’.

5. Click the Plugin tab on the main dashboard.

6. Click Choose files and browse for the location of the downloaded Json file.

7. Select the location where the Json file was downloaded and click Upload.

8. The Json file will be installed to the Cloud Gate device.

Figure 17 Upload the agent

Note: Make sure that the IP address does not waver from 192.168.1.1. To ensure the same, IP address settings are to be done in the router site as well. Contact WebNMS support for further info on the same.
Compatible Sensors

- Analog Sensor
- Digital Sensor
 - Digital Input Sensor
 - Digital Output Sensor
- RS485 Sensor

Analog Sensor

Analog sensors are the sensors whose value changes depending on the quantity of the measured physical value. The measured value is represented by changing the output signal proportionally. The compatible analog sensors are within the voltage limit of 0V to 10V. Examples of analog sensors are the temperature sensors, the pressure sensors, the humidity sensors etc.

Digital Sensor

Digital sensors are the sensors in which the signal is directly converted into the digital signal output. The signal is usually measured in two states in digital sensors i.e. on state and off state. Typical example of a digital sensor can be a door sensor, which gives the output in two states either normally closed (NC) when the door is open or normally open (NO) when the door is closed. Some examples of the digital sensors are the door sensor (magnetic), the LED lights, alarms, the push button switches etc.

Digital Input Sensors: The compatible digital input sensors are within the voltage range of -32V to +32V.

Digital Output Sensors: The compatible digital output sensors are within the voltage range of 0V to 3.3V.

RS485 Sensor

RS485 sensors are the sensors that transmits signal over two lines rather than on single ended with a voltage referenced to the ground. The transmission is done via twisted pair of cables. A common configuration for the RS485 sensors is the bus network i.e. multiple sensors can be attached to a single cable over a long range of distance. Each sensor is given an individual id. This means that multiple sensors will only use up one port on the data logger, saving considerably on cable and data logging costs. At the moment, the compatible RS485 sensors with the Cloud Gate device are the ones which can follow the MODBUS protocol. Examples of RS485 sensors are the energy meters, the humidity sensors, and the temperature sensors etc.

Zoho Corp.
Protocols Supported

- **SNMP**
- **MODBUS**
- **IP Camera**

SNMP (Simple Network Management Protocol)

SNMP is a protocol that is used for collecting and organizing information about the devices on IP networks. It is also used to modify the information for the devices. Devices that support SNMP typically are the inverters, the diesel generators etc.

MODBUS

MODBUS protocol follows the master-slave arrangement in which each device connected will communicate using a unique address. Being said that, one node which is assigned as the master node will initiate communication to one of the slave nodes and will have the unique address of that slave node. Only the intended slave node will respond back to the communication initiated by the master node. Other nodes might receive the data but they won’t acknowledge the received data.

MODBUS has different types of the variants like MODBUS RTU and MODBUS TCP.

- **MODBUS RTU** - MODBUS RTU is an open, serial protocol derived from the master/slave architecture. It is a widely accepted protocol due to its ease of use and reliability.
- **MODBUS TCP** - MODBUS TCP/IP (also MODBUS-TCP) is simply the MODBUS RTU protocol with a TCP interface that runs on Ethernet. The MODBUS messaging structure is the application protocol that defines the rules for organizing and interpreting the data independent of the data transmission medium.

![Figure 18 MODBUS configuration](image-url)
IP Camera (Internet Protocol Camera)

The main purpose of an IP camera is to take snapshots and send it to the WebNMS server whenever there is an alarm triggered on the remote site. This setting can be done in the Alarm configuration page of the WebNMS server. To get detailed information on the Alarm configuration, refer to User Admin Guide.
Symphony IoT – Cloud Gate Deployment Guide

Analog sensors

- **Limitations**
- **Testing**
 - **Find the equivalent physical value**
 - **Connection to the Cloud Gate Device**

Limitations

The only limitations for the analog sensors are the voltage limits i.e. 0v to 10v.

Testing

An analog sensor should be tested before connecting to the Cloud Gate gateway device. The testing procedure is as given below:

1. Measure the voltage using the multi-meter.
2. Use the voltage value obtained from the multi-meter to find the equivalent physical value.
3. Use the manufacturer data as base to find the equivalent physical value.

Find the equivalent physical value

Use the given formula to obtain the equivalent physical value:

\[
\frac{(\text{Max value} - \text{Min value})}{(\text{Max voltage} - \text{Min. voltage})} = m \\
b = \text{Max value} - (m \times \text{Max voltage})
\]

Physical value = \(m \times \text{Voltage} + b\)

- **Voltage** - the voltage that was obtained from the multi-meter.
- **Max value of the voltage** - The value available in the data sheet of the sensor.
- **Min value of the voltage** - The value available in the data sheet of the sensor.
- **Max voltage** - Max voltage value compatible with the Cloudgate gateway device.

Zoho Corp.
Min voltage - Min voltage value compatible with the Cloudgate gateway device.

• b & m are the variables used.

• Physical value is the true value provided by the sensor.

If the sensor does not show the correct physical value as suggested by the manufacturer, the sensor is damaged and should be replaced.

Cloud Gate Device Connection

The analog sensors can be connected to the telematics card on the Cloud Gate device in either pin 4 or pin 13. One ground wire from the sensor will be connected to the ground pin i.e. pin 1 on the telematics card. Once the sensor is connected to the Cloud Gate device, you will need to create a new config file in the WebNMS server.

To create a new config file, refer to the User Admin Guide.

Figure 19 Pin configuration on telematics card for analog sensors
Figure 20 Example circuit for analog sensors
Digital Input Sensors

- **Limitations**
- **Testing**
- **Connection to the Cloud Gate Device**

Limitations

The only limitation for the digital input sensors is the voltage limits of -32v to +32v.

Testing

The digital input sensor is to be tested before connecting it to the Cloud Gate device. To test the digital input sensor, measure the voltage using a multi-meter.

1. If the multi-meter shows 0v or max voltage as suggested by the manufacturer of the sensor, it can be connected to the Cloud Gate device.
2. If the multi-meter does not show any reading, the digital input sensor is damaged and it must be replaced.

Cloud Gate Device Connection

Digital input sensors can be connected to the telematics card on the Cloud Gate device in either of the following pins: 10, 2, 11, 3, and 12. One ground wire from the sensor will be connected to the ground pin i.e. pin 1 on the telematics card. Once the sensor is connected to the Cloud Gate device, you will need to create a new config file in the WebNMS server. To create a new config file, refer to the User Admin Guide.

![Figure 21 Pin configurations on telematics card for digital input sensors](image)
Figure 22 Example circuit for digital input sensors

Figure 23 Configuration for digital input sensors
Digital Output Sensors

- Limitations
- Testing
- Connection to the Cloud Gate Device

Limitations

The only limitation for the digital output sensors is the voltage limits of 0v to 3.3v.

Testing

A digital output sensor is to be tested before connecting to the Cloud Gate gateway device. To test the digital output sensor, inject a 3.3V power supply to the sensor.

If you get the output value, the sensor can be connected to the Cloud Gate device.

If you don't get any output value, the digital output sensor is damaged and should be replaced.

Cloud Gate Device Connection

Digital output sensors can be connected to the telematics card on the Cloud Gate device in either of the following pins: 6, 17, 15, and 18. One ground wire from the sensor will be connected to the ground pin i.e. pin 1 on the telematics card. A relay is connected to the Cloud Gate device and the sensor is connected to the relay in the digital output sensor configuration. Once the sensor is connected to the Cloud Gate device, you will need to create a new config file in the WebNMS server. To create a new config file, refer to the User Admin Guide.

Note: Pin 15 and Pin 6 can be used with DO only if, it has not been used for RS485 connection. If the pin 15 and pin 6 is used for RS485, it will automatically get disabled for DO connection and the same will reflect in the pin configuration page of the WebNMS server.
Figure 24 Pin configuration on telematics card for digital output sensors

Figure 25 Example circuit for digital output sensors
RS485 Sensors

- **Limitations**
- **Testing**
 - Check the Sensor with MODSCAN
 - Connection to the Cloud Gate Device

Limitations

The only limitation with RS485 sensors is the range. It can be used up to a range of 1200m only.

Testing

RS485 sensors are to be tested before connecting to the Cloud Gate gateway device. To test a RS485 sensor, use a USB to RS485 converter. Once the connection is established, check the sensor with a MODSCAN.

Check the Sensor with MODSCAN

To check the sensor with MODSCAN you need to know the COM port number of the USB converter. For checking the COM port number of the USB converter, follow the procedure as given below.

- Click on the **Start** button and then click on the **Control Panel**.
- Click on the **Device Manager** button. A new window will appear listing all the devices connected to your system.
Double click on the **Ports (COM & LPT)**. A list of available serial and parallel port devices will appear on the screen. Your **USB COM** port should appear on the screen with the number assigned to it.

Open **MODSCAN** and click on the **Connection** tab. A new window will appear on the screen where you will have to fill details like the COM port number, the baud rate, the word length, the parity, and the stop bits and click **OK**.
Click on the **Connect** button to establish the connection. Once the connection is established it should show you a true value as given by the manufacturer.

If it displays the true value, the RS485 sensor can be connected to the Cloud Gate device.

If it does not display the true value, the RS485 sensor is damaged and should be replaced.

Cloud Gate Device Connection

RS485 sensors can be connected to the telematics card on the Cloud Gate device in either of the following pins: 15 and 6. One ground wire from the sensor will be connected to the ground pin i.e. pin 1 on the telematics card. Once the sensor is connected to the Cloud Gate device, you will need to create a new configuration file in the WebNMS server. To create a new configuration file, refer to the [User Admin Guide](#).

Figure 27 MODSCAN Connection details

- Click on the **Connect** button to establish the connection. Once the connection is established it should show you a true value as given by the manufacturer.
- If it displays the true value, the RS485 sensor can be connected to the Cloud Gate device.
- If it does not display the true value, the RS485 sensor is damaged and should be replaced.

Cloud Gate Device Connection

RS485 sensors can be connected to the telematics card on the Cloud Gate device in either of the following pins: 15 and 6. One ground wire from the sensor will be connected to the ground pin i.e. pin 1 on the telematics card. Once the sensor is connected to the Cloud Gate device, you will need to create a new configuration file in the WebNMS server. To create a new configuration file, refer to the [User Admin Guide](#).

![Figure 28 Pin configurations on the telematics card for RS485 sensors](#)

Zoho Corp.
Figure 29 Example circuit for RS485 sensors
Data acquisition

Sensor to server communication is established once the configuration file is installed to the gateway device. The configuration of the devices and the data points are some of the parameters that will be visible on the WebNMS server dashboard. The communication between the gateway device and the cloud server is established with the multipurpose agent EdgeX that bridges the gap between the sensor, the gateway and the cloud server.

Once the communication is established with the WebNMS server, the data for any change in the environment of the sensors will be sensed by the sensors and then transferred to the WebNMS server, where it's then aggregated and analyzed. You can access the information gathered by the WebNMS server on your smartphone or web browser. Below given is the illustrative example of how the WebNMS dashboard will look like when the data transmission starts.

![WebNMS server dashboard for data acquisition](image-url)

Figure 30 WebNMS server dashboard for data acquisition
WebNMS support provides complete assistance for troubleshooting any errors that occurs during any phase of data acquisition. For eradicating the errors completely, WebNMS support requires the log reports which can be generated by the user and then mailed to the iot-support@webnms.com.

For MAC and UBUNTU System

Follow the procedure given below to take the logs from any MAC and UBUNTU system.

1. Connect Cloud Gate device one to one with the system.
2. Open the terminal in the system.
3. Give the command `sftp admin@192.168.1.1`.
4. If you are connected to the terminal, the system will ask for password. Give the default password as 'admin'. If you have changed the password previously, use the same password.
5. Give the command `mget -r /mnt/cust`.
6. A folder will appear with all the log files.
7. Zip the entire folder and mail it to iot-support@webnms.com.

For Windows System

Follow the procedure given below to take the logs from any windows system.

1. Connect the Cloud Gate device one to one with the system.
2. Open the sftp or ftp application in the system.
3. Browse and transfer the file `/mnt/cust`.
4. A folder will appear with all the log files.
5. Zip the entire folder and mail it to iot-support@webnms.com.
Frequently Asked Questions

- **How to make the IP address static if it is fluctuating?**

 There is an option on the Cloud Gate device UI to provide static IP address for the device. This IP has to be outside the DHCP IP range of the router to which it is connected. Follow the procedure given below to make the IP address static.

 1. Open browser in your system.
 2. Load 192.168.1.1 and login to Cloud Gate, refer to [Login to the cloud gate device](#).
 3. Click on the Interfaces tab on the Cloud Gate dashboard.
 4. Click general on the dashboard.
 5. Go to IP config settings on the dashboard.
 6. Select the IP mode as 'static'.
 7. Add the IP address and the Netmask.
 8. Add the DNS 1 on the dashboard.
 9. Click 'Save'.

 IP address has been changed to static and won’t fluctuate. In case, if the problem still persists, contact iot-support@webnms.com.

- **Which sensors are compatible with cloud gate device?**

 Refer to the [Compatible sensors with the Cloud gate gateway device](#) for details on this section.

- **How to change the pin configuration?**

 The pin configuration on the WebNMS cannot be changed dynamically. The old mapping has to be deleted and the new mapping has to be done. It is not possible to change the pin or device name after initial configuration.

- **Why can’t I see the data transferred on the server dashboard?**

 [Zoho Corp.](#)
The possible cause for not receiving the data on the server end will be improper 3G connection. If, 3G connection is not a cause of the error then you will need to send the logs to the WebNMS support team, refer to Maintenance and troubleshooting section for details on taking logs.

- **How many devices can be connected to the cloud gate device?**

Cloud Gate can be connected with 2 analog input, 255 RS485 devices, 5 digital inputs, and 4 digital outputs without RS485 or 2 digital output with RS485.

| Note: Maximum 50 data points or 100 data points are recommended for better performance. |

- **How to identify if the sensor is working or not?**

Refer to testing of the sensors under each sensor topic.

- **What are the specifications of the connection cables?**

There is no particular specification for the cables. It is preferred and convenient to use two/three core coaxial cables.

- **How to identify the IP address of the gateway device in case of DHCP network?**

It can be done on Linux based machines only. `nmap - sn <IP subnet>.0/24` will list all IPs on the network and it would be trial and error for every IP to identify the CG. It is preferred to use static IP address in big network situations.
Finding Product Documentation

- Finding Product Documentation
- Feedback

All the documents related to WebNMS IoT are available in our Documentation section.

Feedback

You can send your valuable feedback to iot-support@webnms.com.